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Abstract 

Cross-domain models are important in 

natural language processing for their ability 

to train on one domain’s data and apply it 

to other domain(s). This project seeks to 

look at the data aspect of cross-domain 

model performance, focusing on the 

different cases of resource availability and 

domain data similarity on the overall ability 

to accurately be transferred across 

domains. This project specifically trains a 

cross-domain classifier that is analyzed on 

two different domain datasets. 5 different 

experiments in data are tested to train the 

classifier, each having their own 

advantages and disadvantages for use in 

training models.  

1 Introduction 

In this section, I will discuss the problem that I 

wish to help with, the model I will be 

experimenting with, and how the model can help 

with the problem. 

1.1 Introduction to the Problem 

Training language models can be both 

computationally expensive and data resource 

reliant. For simpler models, these problems may 

not be as apparent, but larger models can take 

much more time, funding, and data to train. 

Counting the Cost of Training Large Language 

Models (Morgan, 2022) shows the time and 

money required to train particular LLMs. They 

can take upwards of $10,937,500 to fund and 

110.5 days to train. Models may also require large 

amounts of labeled/unlabeled training data that 

may be limitedly available.  

Identifying Transferable Information Across 

Domains for Cross-domain Sentiment 

Classification (Sharma et al., 2018) discusses that, 

generally, models must be retrained to learn new 

domain data: an impractical, expensive, and time-

consuming task when there has been much work 

put into the previous domains’ classifier. They 

discuss a method that allows us to reuse the 

previous work: cross-domain classifiers. While not 

a new concept, cross-domain models are designed 

to mitigate this expensive problem  

1.2 Introduction to Cross-Domain Models 

To introduce cross-domain models, let me provide 

an example. Suppose we are creating a sentiment 

classification model on product reviews. Let us say 

we have a model already trained on one category 

of product reviews, but we do not have one trained 

for another category. Through cross-domain 

models, we can reuse the resources we trained the 

first model on to develop a model that can identify 

the target domain. 

Cross-domain models are models trained on one 

domain or data source and utilized on another 

domain. In this report, I often call the domain we 

train on the original domain and call the domain(s) 

we intend to apply it to the target domain(s). We 

can save resources by using past work on another 

our original domain without training an entirely 

new model. We can also save resources by training 

a model with both the original and target domain(s) 

in mind.  

There are some obstacles to training cross-

domain models, however. Most prominently is that 

there are special considerations you must have in 

data sources and planning when using a cross-

domain model; applying the model to another 
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domain will not always have sufficient accuracy. 

For example, target domain-specific information 

will likely not be understood by the cross-domain 

model because the data does not exist in the 

original domain. How do we account for this 

problem and more? 

1.3 Motivation 

As stated, to cut down on computational costs 

and/or limited data samples, we can use 

cross-domain models to transfer past work to target  

domains. Still, this is often not as simple as just 

applying it to the other domain; we need to adapt 

our target data to work with the model.  

In this project, I want to discuss and experiment 

with different cross-domain sentiment classifier 

training techniques. I want to find ways in which 

we can improve cross-domain accuracy, 

specifically focusing on the different ranges of data 

available. This will help gauge how much data 

quantity (and, in some cases, quality) will affect a 

model's performance. 

I also wanted to see if domain similarity affected 

cross-domain performance in a significant way. Do 

two domains that share real-world “common 

attributes” perform better than dissimilar domains? 

Think, for example, electronics and video game 

product reviews. One might classify them as 

similar categories in our understandings of them.  

To this end, I will train a sentiment classifier for 

one dataset and apply it two others: one more 

“similar” semantically to the original dataset and 

the other more “different.” 

2 Data 

I use the Amazon Review Data (2018) dataset 

located at: 

https://nijianmo.github.io/amazon/index.html  

(Ni et al., 2019). 

It includes Amazon review data from May 1996 

to Oct. 2018 divided into different categories of 

items. The three review categories I use are the 

electronics, video games, and grocery/gourmet 

food datasets. More specifically, I use the 5-core 

dataset versions of these datasets, meaning that 

each product that has reviews in the dataset has at 

least 5 reviews and that each reviewer has reviewed 

at least 5 items. This downsizes the file size 

tremendously and leaves reviews that are more 

likely to be thorough (as the reviewers are not one-

time reviewers).  

The files are in JSON format and need to be 

extracted before they are used. I simply used a ZIP 

extractor like 7Zip to extract the files before use. 

The electronics dataset will train the cross-

domain classifier. The other two datasets will be 

the target domains. Models will be trained on the 

two target domains to test their performance 

against the cross-domain classifier. Electronics and 

video games are designed to be the two "similar" 

domains while grocery/gourmet is the outlier. 

Intuitively, we might expect an electronics 

classifier to work better on the video game domain 

than the grocery domain.  

There are 6,739,590 electronics reviews, 

497,577 video games reviews, and 1,143,860 

grocer/gourmet food reviews. Each review has the 

following structure: 

{"image": ["https://images-na.ssl-images-

amazon.com/images/I/71eG75FTJJL._S

Y88.jpg",  

"overall": 5.0,  

"vote": "2",  

"verified": True,  

"reviewTime": "01 1, 2018",  

"reviewerID": "AUI6WTTT0QZYS",  

"asin": "5120053084",  

"style": {"Size:": "Large", "Color:": 

"Charcoal"},  

"reviewerName": "Abbey",  

"reviewText": "I now have 4 of the 5 

available colors of this shirt... ",  

"summary": "Comfy, flattering, discreet--

highly recommended!",  

"unixReviewTime": 1514764800} 

As I am training the model to classify the 

rating based on the review’s text, we only need to 

focus on two attributes: reviewText and overall. 

“reviewText” is the review’s text (what we 

identify). “overall” is the rating given to the review 

(the class we want to associate with the 

reviewText). 

Now that we have the data, we need to format 

it for both easier use and better information 

extraction from the model.  

3 Preprocessing 

There are three types of preprocessing that need to 

be done: file preprocessing, splitting, and data 

preprocessing. 

https://nijianmo.github.io/amazon/index.html
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3.1 File Preprocessing 

The files for the datasets are both very large and 

contain information that we do not want in our 

training process.  

First, reviews with empty reviewText values 

need to be culled. Reviews that provide no 

reviewText also provide no data to train on, 

harming the training process. I read the JSON files 

line-by-line and save only the reviews with 

reviewText values longer than 3 words. This not 

only culls empty reviews, but also removes short 

reviews and reduces the file size. 

Secondly, the star-based class system proves 

hard to train on for a variety of reasons: ambiguity 

between some classes (like 4 and 5 stars and 1 and 

2 stars) and there are smaller samples of 2-star 

reviews than most other classes. To mitigate these 

problems, I convert the 5-class system into a 3-

class system. Any reviews with an “overall” value 

of 1 or 2 gets a new “overall” of 0 (negative), 3 star 

reviews get a score of 1 (neutral), and 4 or 5 star 

reviews get a score of 2 (positive).  

With these changes, our data is more 

informative to the model and the computational 

and storage load (from the original larger files) is 

reduced. 

3.2 Splitting into Training and Testing Sets 

Now that the reviews have been filtered and 

mapped to simpler classes, they need to be divided 

into training and testing sets for each dataset.  

Each domain dataset has 120,000 training 

samples and 12,000 testing samples. We use a large 

amount of samples because we are training the 

word vectorization model and classifier model 

from scratch (except in one experiment). This split 

is the max amount we can split the smallest dataset, 

video games, into equal classes.  

Each class for the datasets gets fair 

representation. There are 40,000 positive, neutral, 

and negative reviews each in the training set. There 

are 4,000 of each in the training set as well.  

In making these splits, the files are shuffled, 

ensuring random samples in each run of the dataset 

initialization. This is not random per experiment 

though. Each experiment has the same samples.  

These datasets are saved into new JSON files for 

quicker use in the future. 

  

3.3 Data Preprocessing 

Now that the reviews have been split for each of the 

datasets, the data needs to be preprocessed to 

increase training efficiency.  

First, the extraneous attributes are removed. As 

stated earlier, the only attributes we need to train 

the classifiers on are the “reviewText” and 

“overall” attributes. A function resaves the data 

entries with only these two attributes.  

Second, the reviewText itself must be 

preprocessed to effectively train the word 

vectorization and neural network models. I apply 

common data preprocessing techniques. The 

reviewText values are lowercased, scrubbed of 

non-alphanumeric characters, tokenized, and each 

word stemmed (reducing the token to a root-form). 

I originally implemented stop-word removal as 

well, but I found that it led to slightly worse model 

performance in my tests.  

An example of a data entry currently:  

{“overall”: 2 

“reviewText”: [‘thi’, ‘r’, ‘case’, ‘is’, ‘the’, 

‘best’, ‘i’ ‘have’]} 

Later in the program, when the word vectorization 

model is trained, the data is further processed by 

converting the reviewTexts into their vector 

representations by the word vectorization model.  

The vectorized data is then stored in a new class, 

ReviewDataset, which is responsible for 

converting the data into their tensor 

representations. These ReviewDatasets are then 

used in PyTorch's DataLoader objects to pass them 

to the network model. 

4 Model 

To train the model, I use Word2Vec embeddings to 

vectorize the reviewTexts into a form that the 

neural network can use. Each of my experiments 

uses different data to train the Word2Vec model 

because of the simulations of different quantities of 

data available. I set the vector size to 300 in my 

Word2Vec models, and I trained them for 10 

epochs.  

My neural network has two fully-connected layers. 

The first takes a dimension of 300 (the number of 

embeddings I set for the Word2Vec model) and 

outputs a dimension of 128 (the hidden layer 

dimension). It uses ReLU. The second layer takes 

in a dimension of 128 (the hidden layer dimension) 

and outputs 3 dimensions, the 3 different classes. 

To do so, it goes through softmax. 
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While there are more robust and accurate 

models to train a sentiment classifier on (like 

BERT to fine-tune on or LSTMs), my project 

focuses more on the effects of different data 

qualities and quantities available from the target 

domains on the cross-domain classifier. While 

performance was important, the number of 

experiments and factors promoted a quicker model 

that captures the comparisons between 

experiments rather than building a slower but 

better model. 

The model was trained and evaluated on the test 

data using cross-entropy loss (since it is a multi-

class classifier) with the Adam optimizer and a 

learning rate of 0.001. Each model is trained for 10 

epochs. In each epoch, the cross-domain model 

(electronics model) is evaluated on the target 

domains (video game and grocery test datasets).  

5 Experiments 

Now that the model and data have been defined, 

the project focus is turned back to the cross-domain 

perspective.  

I divide my project into 5 main experiments, 

each with their own distinct use cases and 

advantages: the individual electronics model, the 

pre-trained word2vec model, the shared word2vec 

model, the summary model, and the limited cross-

domain data model.  

Each experiment alters the amount and quality 

of data available in some way. These give differing 

results on cross-domain accuracy and even original 

domain accuracy.  

5.1 Individual Electronics Model 

This model represents the results of applying no 

special considerations for cross-domain target 

classification. It uses only the electronics model 

data as input for both the Word2Vec model and 

sentiment classifier network model.  

As expected, this does not work well for cross-

domain classification. At epoch 10, the cross-

domain sentiment classifier gets an accuracy of 

70% on its own electronics reviews, ~36% on the 

video games reviews, and ~39% on the grocery 

data.  

Comparing this performance to separately 

trained video games and grocery models, the target 

domain-trained models perform much better on 

themselves than the electronics model does on 

them. While the electronics model attains an 

accuracy of ~36% on the video games data, the 

video games model performs at ~68% on itself. 

Likewise, the grocery data on the electronics 

model performs at ~39% but the grocery model 

itself performs at ~74%.  

This has a few implications.  

Without consideration for cross-domain 

classification, the electronics model performs 

terribly as a cross-domain classifier. The 

individually trained models for video games and 

grocery performed much better. This was likely 

because there was no representation of the other 

two datasets in the electronics model’s word2vec 

model. This is important going forward. 

Surprisingly, the electronics model performed 

worse on the video games model. I think this is due 

to the two having perhaps contrasting meanings for 

words. Grocery and video games coexist better 

because they are likely to have less contrast. For 

example, a video game "running fast" is likely a 

good thing. An electronic "running fast" could be a 

good thing, but in the context, it is equally likely to 

be talking about "the battery running fast". The 

video game model is also likely harder to learn. It 

will consistently perform the worst going forward. 

This might indicate that we should not rely on our 

own semantics for similarity. There could be 

differences in ways we do not immediately 

recognize. 

The main use case I can see for the individually 

trained model is for situations where there is NO 

unlabeled training data available for the target 

domain and there is enough similarity between the 

two domains that the accuracy would not have as 

much of a gap. On the plus side, this makes it the 

most flexible as it requires nothing from the target 

domain. It just might not be able to identify 

anything from the target either. 

5.2 Pre-trained Word2Vec Model 

This model represents a similar case to the last: you 

have insufficient target data. A pre-trained 

word2vec model is used to help fill in the word 

vectorization gaps from the different datasets. I use 

the GoogleNews-vectors-negative300 pretrained 

word2vec model (Google, 2013). This model is 

used to obtain the word embeddings for the data. 

The electronics reviews are still used to train the 

cross-domain sentiment classifier network.  

This model performs much better than the 

individually trained model for cross-domain 

classification. At epoch 10, the cross-domain 
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sentiment classifier gets an accuracy of around 

64% on its own electronics reviews which is a 

significant drop from the last model. But, it 

performs much better on the other datasets: ~59% 

on the video games data and ~59% on the grocery 

data.  

This model performs much better as a cross-

domain classifier than the individually trained 

model. This came at the cost of the original 

domain’s accuracy, however, dropping by about 

6%. Still, it works better generally due to the pre-

trained model. It is evident that you lose some of 

the domain-specific information, especially since 

the pre-trained word2vec model was trained on 

news articles, not reviews.  

Like the individually trained model, its main use 

case is for when there is no target-domain 

information for the model to use. Its better cross-

domain performance may incentivize its use over 

the last. 

5.3 Shared Word2Vec Model 

This model assumes you have a significant amount 

of unlabeled data for the target domains. A new 

word2vec model is trained with a combination of 

all of the domain’s datasets to train it. The 

embeddings, thus, consider all three domain’s 

reviewText values.  

This gives majorly improved performance 

across the board. At epoch 10, the cross-domain 

model still performs well on its own original 

domain at ~69% accuracy. It also performs better 

as a cross-domain classifier for the target domains: 

~64% accuracy for the video game dataset and 

~65% accuracy for the grocery dataset.  

This model has performed the best so far as an 

individual classifier and a cross-domain classifier. 

Combining the data to create the word2vec gives it 

knowledge on more domain-specific language and 

how to classify it. 

The main use case for this model is if there is a 

large amount of unlabeled data for the target 

domains. While I contributed an equal amount of 

data to the labeled electronics data, experiments 

may need to be done to gauge its effectiveness 

when given less unlabeled target domain data.  

5.4 Summary Model 

This is a more unique, data-specific model 

proposed in the paper, Making the Best Use of 

Review Summary for Sentiment Analysis (Yang et 

al., 2020). They state that using user-generated 

summaries work just as well as the reviewText 

attribute information. Our data has summaries 

available, so I wished to test this. This is not a 

cross-domain specific test, but I thought it would 

perform better since the summaries contained more 

general language like "good", "five stars", etc. This 

model shares similarities to the shared word2vec 

model as we combine the summaries of each 

dataset into the word2vec model.  

It does perform the best of all the models if you 

provide its summaries as testing data. At epoch 10, 

it performs at ~71.5% on its original electronics 

domain. On the cross-domain targets, it performs 

~64.5% on the video games and ~70% on the 

grocery dataset.  

This model is very good at both cross-domain 

and original domain classification, but summaries 

on the input data are needed for it to perform well. 

Given raw reviews (rather than summaries), it 

performs at only ~62% on its own domain while 

the target domains score ~57% on video games and 

62% on grocery. This is about as good as the pre-

trained model.   

This model performs the best of all the models, 

but it has the highest requirements, summary of the 

input text. This summary generation could maybe 

be delegated to AI models, but that could have 

problems. It did train much faster because it had 

less text but has a niche use case. 

5.5 Limited Cross-Domain Data Model 

The idea for this model came from the paper, 

Cross-Domain Sentiment Classification with 

Target Domain Specific Information (Peng et al., 

2018).  They state that using a small amount of 

domain-specific information will improve cross 

domain model performance. I tried this only 

between the electronics model and video games 

model as I wanted to more so focus on one cross-

domain model this time. I also did not want to 

hinder results. I introduced a small sample of 1,200 

video game review samples (1% of training 

dataset) to the electronics model of 120,000 

samples. Now the training set has 121,200 

samples. 

It performs very well for such a small amount of 

labeled samples being introduced. At epoch 10, the 

original domain performs well on itself at ~70% 

accuracy. On the video game target domain, it 

performs with around 62% accuracy. This is not the 

best overall, but it is much more flexible than some 

past experiments.  
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The model performs surprisingly well on the 

video game domain despite the limited labeled 

training samples I gave it. The main issue is that it 

is labeled data. 1,200 is small in comparison to the 

overall model but is still a lot of data. The ratio of 

target domain to original domain labeled data may 

need to be experimented with. 

The main use case is when you have available 

but limited labeled data available. If you have a 

small amount of labeled data, this model will 

perform much better than the individually trained 

alternative. If you have a small amount of 

unlabeled data instead, you may try experimenting 

using it in the shared Word2Vec model but not in 

the training of the neural network like done here. 

6 Discussion and Takeaways 

As seen from the experiments conducted in this 

project, cross-domain models can help reduce the 

computational and dataset burden that training new 

models can have.  

However, one must make special preparations to 

attain an effective cross-domain classifier for the 

target domain. As seen in experiment 1, the model 

performs poor when not exposed to any of the 

target domains' data. 

As seen in experiments 2, 3, and 5, there are 

various ways to improve cross-domain accuracy 

depending on how much and what kind of data you 

have available on the target domain.  

2. You can use pre-trained Word2Vec models or 

other general resources when you have no target 

domain information.  

3. You can train effective cross-domain 

classifiers if given lots of unlabeled training data 

for the target domains. 

5. You can train effective cross-domain 

classifiers given a small amount of labeled 

training data for the target domains. 

Experiment 4 shows that there are 

unconventional yet effective ways to make your 

model perform better by using the summaries. 

All the experiments also show that one cannot 

rely on their semantic assumptions (like I did) 

when picking "similar" datasets. Despite video 

games and electronics being similar, electronics 

model performed better on the grocery model. 

Overall, there are various ways to improve 

cross-domain accuracy regardless of the situation 

you are in. 

7 Access to my Project 

My project’s .ipynb file can be found at the link 

below. It walks through the entire process.  

https://drive.google.com/file/d/1ROB70g

Le9JOt_9MO39oUncAm34VCbcCe/view?usp=d

rive_link  
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